项延训

项延训

E-mail: yxxiang@ecust.edu.cn
职位: 

职称: 教授,博士生导师;国家杰青(2020)、国家优青(2016)。研究生招生专业:博士招生专业:080703动力机械及工程、080202机械电子工程、机械专业工程博士;硕士招生专业:080706化工过程机械、080202机械电子工程

 

 

 

 


个人简介:

2000年毕业于同济大学,获应用物理学士学位;2003年毕业于同济大学,获声学硕士学位;2011年毕业于澳门沙金网址js500,获化工过程机械博士学位。2005年至今任职于澳门沙金网址js500,教授,博士生导师;作为项目负责人主持包括国家杰青、优青、NSAF联合基金重点项目等国家自然科学基金项目、国家重点研发计划项目负责人,以及多项省部级项目和企业合作科研项目。入选第十届上海青年科技英才(2020年);获2019年度上海市科技进步奖一等奖(第1完成人);获2017年上海市魏墨盦声学奖;获2015年度上海市自然科学奖一等奖(第1完成人);获2014年上海市科技启明星计划;发表SCI论文100余篇,授权/申请专利20余项。

 

联系方法:

上海市梅陇路130号澳门沙金网址js500(实验17楼),邮编:200237。yxxiang@ecust.edu.cn

研究方向

课题组坚持面向科技前沿和国家重大需求,开展材料/结构状态多维度跨尺度智能检测理论、方法研究与装备研发。瞄准严苛工况下重大装备服役安全保障及寿命预测难题,建立材料损伤微弱变化的非线性超声表征与评价理论,发展与多源异构大数据、人工智能技术深度融合的非线性超声层析成像及智能量化方法,实现装备全寿命周期健康状态精准评估与安全风险智能预警。研究内容涉及超声学、材料力学、信号处理、人工智能等交叉学科。具体研究方向包括:

(1)材料微损伤非线性超声检测

(2)超声导波检测及成像

(3)超声相控阵成像

(4)先进传感材料及高灵敏柔性传感器件

(5)声学超材料与声场调控技术

(6)检测数据挖掘与机器学习

承担科研项目

[1] 国家重点研发计划项目:“高温蠕变无损检测与损伤状态评价技术研究及应用”,项目负责人,批准号:2022YFF0605600,2022.10-2026.03;

[2] 国家自然科学基金杰青项目:“非线性超声理论及应用”,项目负责人,批准号:12025403, 2021-2025年;

[3] 国家自然科学基金NSAF国家安全联合基金重点项目:“多层复杂结构状态的电磁超声相控阵检测方法研究”,项目负责人,批准号:U1930202,2020-2023年; 

[4] 国家重点研发计划课题:“严苛环境下安全性能衰退在线感知和失效预警”,课题负责人,批准号:2018YFC0808806,2018-2021;

[5] 国家自然科学基金优青项目:“非线性超声导波”,项目负责人,批准号:11622430, 2017-2019年;

[6] 国家自然科学基金面上项目:“基于非线性超声导波混频的结构塑性损伤定位及表征方法”,项目负责人,批准号:11774090, 2018-2021年;

[7] 国家自然科学基金面上项目:“微细观尺度下材料蠕变行为的非线性兰姆波评价理论与表征方法”,项目负责人,批准号:11474093,2015-2018年;

[8] 装备预研教育部联合基金项目:“极端条件服役结构健康监测方法及系统”,项目负责人,2018-2019年。

发表论文


[1]. Da Teng, Lishuai Liu, Yanxun Xiang*, Fu-Zhen Xuan. An Optimized Total Focusing Method based on Delay-Multiply-and-Sum for Nondestructive Testing. Ultrasonics, 2023, 128: 106881.

[2]. Xinfeng Guo, Wujun Zhu , Xunlin Qiu and Yanxun Xiang*. A Lorentz Force EMAT Design with Racetrack Coil and Periodic Permanent Magnets for Selective Enhancement of Ultrasonic Lamb Wave Generation. Sensors, 2023, 23: 96.

[3]. Ning Pei, Yanxun Xiang*. Torsional damage analysis for pre-delaminated carbon glass fiber-reinforced hybrid laminates based on acoustic emission. Applied Acoustics, 2023, 202: 109181.

[4]. Taotao Ding, Ailing Song*, Chaoyu Sun, Yanxun Xiang*, and Fu-Zhen Xuan. Mode conversion of Lamb waves in a composite phononic crystal plate numerical analysis and experimental validation. Journal of Applied Physics, 2022.

[5].  WenFa Zhu, Yanxun Xiang*, HaiYan Zhang, Yao Cheng, GuoPeng Fan, Hui Zhang. Research on ultrasonic sparse DC-TFM imaging method of rail defects. Measurement, 2022, 200: 111690.

[6].  Xunlin Qiu*, Yuqing Bian, Jiawen Liu, Yanxun Xiang*, Taotao Ding, Wujun Zhu, Fu-Zhen Xuan. Ferroelectrets: Recent developments. IET Nanodielectrics, 2022, DOI: 10.1049/nde2.12036.

[7].  Ailing Song, Chaoyu Sun, Yazhu Bai, Yanxun Xiang*, Fu-Zhen Xuan. Reconfigurable acoustic metagrating for multiple anomalous wavefront manipulation functionalities. Physics Letters A, 2022, 453: 128477.

[8]. Lishuai Liu, Peng Wu, Yanxun Xiang*, and Fu-Zhen Xuan. Autonomous characterization of grain size distribution using nonlinear Lamb waves based on deep learning. J. Acoust. Soc. Am. 2022, 152 (3): 1913-1921.

[9]. Lishuai Liu, Di Sun, Yanxun Xiang*, and Fu-Zhen Xuan. Deep learning-based solvability of underdetermined inverse problems in nonlinear ultrasonic characterization of micro damages. Journal of Applied Physics, 2022, 132, 144901.

[10]. Ben Li, Hongyan Zhou, Yanxun Xiang*, Wujun Zhu. Evaluation of preparation quality and wear state of TC4-based self-lubricating composite based on Lamb wave. Materials Today Communications, 2022, 31: 103722.

[11]. Taotao Ding, Qiang Wan, Yanxun Xiang*, Xunlin Qiu*, Mingxi Deng and Fu-Zhen Xuan. Selectable single-mode guided waves for multi-type damages localization of plate-like structures using film comb transducers. Nondestructive Testing and Evaluation, 2022, https://doi.org/10.1080/10589759.2022.2071890.

[12]. Han Chen, Mingxi Deng*, Guangjian Gao, Caibin Xu, Ning Hu, Yanxun Xiang*. Characterization of interfacial property of a two-layered plate using a nonlinear low-frequency Lamb wave approach. Ultrasonics, 2022, 124: 106741.

[13]. Lishuai Liu, Chenjun Guo, Yanxun Xiang*, Yanxin Tu, Hongwei Mei, Liming Wang and Fu-Zhen Xuan. Health Monitoring of RTV Silicone Rubber Coating on Insulators Based on Multimode Features of Active Infrared Thermography. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 4502609.

[14]. Chaoyu Sun, Ailing Song*, Yanxun Xiang*, Fu-Zhen Xuan. Multifunctional phononic crystal filter for generating a nonlinear ultrasonic guided wave. Journal of Physics D-Applied Physics, 2022, 55(26): 265104.

[15].  Ailing Song, Chaoyu Sun, Yanxun Xiang*, and Fu-Zhen Xuan. Switchable acoustic metagrating for three-channel retroreflection and carpet cloaking. Applied Physics Express, 2022, 15: 024002.

[16]. Jianying Tang, Wujun Zhu, Xunlin Qiu, Ailing Song*, Yanxun Xiang*, Fu-Zhen Xuan. Non-contact phase coded excitation of ultrasonic Lamb wave for blind hole inspection. Ultrasonics, 2022, 119: 106606.

[17].  Lishuai Liu, Chenjun Guo, Yanxun Xiang*, Yanxin Tu, Liming Wang, and Fu-Zhen Xuan. Photothermal Radar Shearography A Novel Transient-Based Speckle Pattern Interferometry for Depth-Tomographic Inspection. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4352.

[18].  Lishuai Liu, Chenjun Guo, Yanxun Xiang*, Yanxin Tu, Liming Wang, and Fu-Zhen Xuan. A Semisupervised Learning Framework for Recognition and Classification of Defects in Transient Thermography Detection. IEEE Transactions on Industrial Informatics, 2021, DOI 10.1109/TII.2021.3101309.

[19].  Jichao Xu, Wujun Zhu, Yanxun Xiang*, Yang Gao and Xunlin Qiu. Localization and Imaging of Micro-Cracks Using Nonlinear Lamb Waves with Imperfect Group-Velocity Matching. Applied Science, 2021, 11: 8609.

[20].  Wujun Zhu, Zisheng Xu, Yanxun Xiang*, Changjun Liu*, Mingxi Deng, Xunlin Qiu, Di Sun, Fuzhen Xuan. Nonlinear ultrasonic detection of partially closed cracks in metal plates using static component of lamb waves. NDT&E Int. 2021, 124: 102538.

[21]. Taotao Ding, Wujun Zhu*, Congyun Ma, Yanxun Xiang*, Mingxi Deng, Fu‑zhen Xuan. Influence of cyclic‑loading induced fatigue micro‑crack growth on generation of nonlinear ultrasonic Lamb waves. Journal of Nondestructive Evaluation, 2021, 40: 62, https://doi.org/10.1007/s10921-021-00792-8.

[22].  Han Chen, Mingxi Deng*, Guangjian Gao, Ning Hu, Yanxun Xiang*. Modeling and simulation of static component generation of Lamb wave propagation in a layered plate. Ultrasonics, 2021, 116: 106473.

[23].孙迪, 朱武军, 项延训*, 轩福贞. 微裂纹的非线性超声检测研究进展. 科学通报, 2021, doi: 10.1360/TB-2021-0798.

 [24]. 宋爱玲, 孙超彧, 陈天宁, 项延训, 轩福贞. 声学超表面的非对称声分束特性研究. 人工晶体学报. 2021, 50(7): 1363-1371.

[25]. 银信, 朱武军, 孙茂循, 项延训, 邓明晰, 轩福贞. 裂纹尖端塑性区非线性超声混频定位表征. 声学学报, 2021, 46(3): 463-470.

[26]. Guang-Jian Gao, Chang Liu, Ning Hu, Ming-Xi Deng, Han Chen, Yan-Xun Xiang. Response of second-harmonic generation of Lamb wave propagation to microdamage thickness in a solid plate. Wave Motion, 2020, 96: 102557.

[27].Han Chen, Guang-Jian Gao, Ning Hu, Ming-Xi Deng, Yan-Xun Xiang. Modeling and simulation of frequency mixing response of two counter-propagating Lamb waves in a two-layered plate. Ultrasonics, 2020, 104, 106109.

[28].Guang-Jian Gao, Ming-Xi Deng, Ning Hu, Yan-Xun Xiang. Enhancement effect of cumulative second-harmonic generation by closed propagation feature of circumferential guided waves. Chinese Physics B, 2020, 29(2): 024301.

[29].Xiao Wang, Yanxun Xiang, Wu-Jun Zhu, Tao-Tao Ding, Hua-Ying Li. Damage assessment in Q690 high strength structural steel using nonlinear Lamb waves. Construction and Building Materials, 2020, 234: 117384.

[30].Jianying Tang, Likun Tong, Yanxun Xiang, Xunlin Qiu, Mingxi Deng, Fuzhen Xuan. Design, Fabrication and Characterization of EMFi-based Ferroelectret Air-coupled Ultrasonic Transducer. Sensors and Actuators A: Physical, 2019, 296: 52-60.

[31].  Maoxun Sun, Yanxun Xiang, Mingxi Deng, Bo Tang, Wujun Zhu and Fu-Zhen Xuan. Experimental and numerical investigations of nonlinear interaction of counter-propagating Lamb waves. Applied Physics Letters, 2019, 114: 011902.

[32]. Ben Li, Rong Liu, Wujun Zhu, Qiaoxin Zhang, Jingui Yu, Yanxun Xiang, Hongyan Zhou. Research on the interaction between surface laser-pit of Ni-based single crystal alloy and lamb wave under micro-conditions. Applied Surface Science, 2019, 483: 840-848.

[33]. Ming-Liang Li, Liang-Bing Liu, Guang-Jian Gao, Ming-Xi Deng, Ning Hu, Yan-Xun Xiang, and Wu-Jun Zhu. Response features of nonlinear circumferential guided wave on early damage in inner layer of a composite circular tube. Chinese Physics B, 2019, 28(4): 044301.

[34]. Yanxun Xiang, Da Teng, Mingxi Deng, Yunze Li , Changjun Liu and Fuzhen Xuan. Characterization of Local Residual Stress at Blade Surfaces by the V(z) Curve Technique. Metals, 2018, 8: 651-662.

[35]. Wujun Zhu, Yanxun Xiang, Chang-jun Liu, Mingxi Deng, Congyun Ma and Fu-zhen Xuan. Fatigue Damage Evaluation Using Nonlinear Lamb Waves with Quasi Phase-Velocity Matching at Low Frequency. Materials, 2018, 11, 1920; doi:10.3390/ma11101920.

[36].  Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate. Chinese Physics Letters, 2018, 35(11): 114302.

[37]. Wujun Zhu, Yanxun Xiang, Chang-Jun Liu, Mingxi Deng, Fu-Zhen Xuan. A feasibility study on fatigue damage evaluation using nonlinear Lamb waves with group-velocity mismatching. Ultrasonics, 2018, 90: 18-22.

[38]. Weibin Li, Mingxi Deng, Ning Hu, Yanxun Xiang. Theoretical analysis and experimental observation of frequency mixing response of ultrasonic Lamb waves. Journal of Applied Physics, 2018. 124: 044901.

[39].  Wujun Zhu, Yanxun Xiang, Chang-Jun Liu, Mingxi Deng and Fu-Zhen Xuan. Symmetry properties of second harmonics generated by antisymmetric Lamb waves. Journal of Applied Physics, 2018. 123: 104902.

[40].  Maoxun Sun, Yanxun Xiang, Mingxi Deng, Jichao Xu, Fu-Zhen Xuan. Scanning non-collinear wave mixing for nonlinear ultrasonic detection and localization of plasticity. NDT&E International, 2018. 93: 1-6.

[41].   Mingliang Li, Mingxi Deng, Guangjian Gao, Yanxun Xiang. Modeling of second-harmonic generation of circumferential guided wave propagation in a composite circular tube. Journal of Sound and Vibration, 2018.421: 234-245.

[42].  Mingliang Li, Mingxi Deng, Guangjian Gao, Yanxun Xiang. Mode pair selection of circumferential guided waves for cumulative second-harmonic generation in a circular tube. Ultrasonics, 2018, 82: 171-177.

[43]. 赵珊珊, 邓明晰, 项延训, 轩福贞. 超声Lamb波二次谐波发生效率分析与模式选择. 声学学报, 2017, 42(3): 290-296.

[44].  Yanxun Xiang, Congyun Ma, Mingxi Deng, Fu-Zhen Xuan and Jianfeng Zhang.Lamb wave mode and frequency selection for assessment of creep damage in titanium alloy plates. Insight, 2017, 59(4): 196-202.

[45].  Wei-Bin Li, Ming-Xi Deng, Yan-Xun Xiang. Review on second-harmonic generation of ultrasonic guided waves in solid media: (I) theoretical analyses. Chinese Physics B, 2017, 26(11): 114302.

[46].  Ming-Liang Li, Mingxi Deng, Guang-Jian Gao, Han Chen, Yan-Xun Xiang. Influence of change in inner layer thickness of composite circular tube on second-harmonic generation by primary circumferential ultrasonic guided wave propagation. Chinese Physics Letters, 2017, 34(6): 064302.

[47].  Mingxi Deng, Guang-Jian Gao, Yan-Xun Xiang, Ming-Liang Li. Assessment of accumulated damage in circular tubes using nonlinear circumferential guided wave approach A feasibility study. Ultrasonics, 2017, 75: 209-215.

网页发布时间: 2023-01-07